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1. INTRODUCTION

In combining bodies of information, if some of the data is common to both sets, then the sets

are correlated, and the potential amount of information is diminished as a result of the correlation.

For example, when data is expensive it is common for one set of data to serve as the basis for

many studies. Combining the results of these studies as if they were independent could lead to

ill-founded confidence intervals for the final estimator. In some situations the measurements may

be correlated. Pollution measurements of a body of water will be correlated across both time and

location. Taking many water samples (as opposed to one) at a given location and time does not

necessarily increase the information.

In many instances, there is a need to extract information from data that is self-correlated. In

some situations the problem of correlation is solved by sampling at distances over which the

correlation is considered negligible. This is an option when the size of the sampling window can

be controlled by the designer. In other situations, there is a tradeoff between the size of the

sampling window and cost; thus, it is useful to have a method available to gain insight into these

tradeoffs. It is the purpose of this report to provide some insight and clarify some of the issues

associated with this problem.

2. BACKGROUND

In signal processing the amount of information that can be extracted from a signal is a

function of the variance, the number of samples taken, the correlation of the signal, and the

observation interval. When the correlation time of the signal is longer than the sampling window,

it is possible for an estimate to contain a large bias. This situation can arise when an incoming

projectile is detected a short distance from its intended target and the autocorrelation time of the

measurement noise is longer than the time remaining until impact. For certain noise functions

we would like to know how much information can be extracted from the signal, what is a good

sampling rate, and how much gain is there in extending the detection distance (or increasing the

observation window). Usually the dimension of correlation is time; however, it can be proximity

along any dimension. If the correlation Is considered a nuisance, an adequate model for the

expectation of two observations is an exponential correlation model (Young and Jakeman 1979;
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Seber and Wild 1989). If vis the variable of correlation, then 0 is the parameter in the correlation

function. The equation,

Cor(v,,v) = e -P( ' ) (1)

gives the correlation between observations separated by d(vpv) where d is the appropriate

distance function. Typically, variables are correlated across time or physical location.

When it is not feasible to partition the sample space into groups or clusters that are not highly

correlated, the effects of correlation must be addressed. An approach to this issue is to consider

the tradeoffs between the cost of an observation and the gain of information due to the

observation. The gain of information is indicated by the reduction of the covariance. Thus, if an

observation leads to a significant reduction of the covariance of the estimate then it is cost

effective. One approach to this question is to find the reduction in variance for different sampling

methods and then look at the performance/cost questions. The problem of estimating the mean

of a set of correlated data is the problem of consideration.

3. THE MEAN AS AN ESTIMATOR

Consider the problem of estimating the mean over a fixed time interval when the

measurement noise is correlated across time. The goal is to quantify the amount of information

extracted for different sampling rates. As the sampling rate increases, the correlation between

the obs, rvations will increase. The discussion focuses on the decrease in the variance as a

function of increase in sampling rate. The problem stated mathematically follows. Find Var(Y)

where

-- N 1

N
Y, Y+ V,, V ,- N(0'a 2 ),

Cor( V,, Vj) = e -P.1;-41 (2)
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Let the total amount of time available be T, and assume that equally spaced observations will

be taken. The correlation between successive observations, a, is defined by the following

equation

-1T

a =e "i r  (3)

Correlation implies that the same thing is being measured on separate occasions, and thus

reduces the potential information in a sample.

For uncorrelated observations, the inner product associated with the measurements is ING 2.
-4

For simplicity, c; will be assumed to be one for the rest of the discussion. Let X be an N
.-4

dimensional vector of ones and Y be the vector of observations; then the estimator of the

average of Yj is

N

and

Var()= 1 X 1 = 1 (4)
N N N

When correlation across the observations exists, the observations are not independent. In

this situation the covariance matrix of the observations is found by using Equation 3. Since a is

the correlation between observations one time step from each other, the correlation between Y
and Yj is a.l' - . The correlation matrix, T, associated with the set of measurements is
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1 a a2  ... a(N-1)

a 1 a ... ot(N 2 )

a2  a 1 ... (N3)

a 3  a 2  a CC(N-4)

CC(N-1) a(N 2) o.(N 3) ... 1

As a approaches 1, the correlation matrix ceases to be positive definite. One way to see this
idea is to consider sweeping the matrix on the (1,1) element. The sweep operator can be thought

of as a variation of the Gram-Schmidt process. When the matrix is swept on the (1,1) element,
the first row becomes orthogonal to the space spanned by the remaining altered vectors. In
terms of inner products, the projection of the first observation onto another observation is
removed from each observation in turn. This operation removes all the information contained in
the first observation from the others. If each row contains values close to 1, the result of this will
be that there is very little information left after the first row is processed. For a discussion of the
sweep operator and its implementation see Dempster (1969) or Seber (1977).

Var(Y-), with I as the covariance of the observations, is 1 K- x . Since X is aN N
column of ones, this operation adds the values of each column and then adds the columns and
divides the result by N2. In this case, to find the variance of the estimate, the elements of the
matrix are added and then that sum is divided by the square of the number of observations.
Examination of the matrix shows there is one diagonal of ones of length N, there are two
diagonals of length N-1 filled with a, two diagonals of length N-2 filled with a 2 and so on.

Therefore,

Var(YF) N + 2E 1)i (5)
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If a is 0 then the formula does indeed reduce to the previous case of no correlation; and if a is

1 there is no reduction in the variance of the estimate by taking more data. id a=1 then

N-1 N-1

N + 2 r.(N-i) = N + 2 ,i
I=1 I-1

N N 2  (6)

and using Equation 5 the Var( Y) = 1. The value of a depends on 3, the time period, T and the

rumber of observations, N. Rewriting Equation 5 to reflect this dependence yields,

N- -P TI

Var(Y) N+ 2 (N-i)e (7)

as the formula of interest.

Using Equation 7, the Var(Y) can be calculated from known values of T, 13, and N. In this

case, it is possible to reduce the number of variables by expressing T in terms of P3. When 13 is
small, the correlation will fall off slowly over time. In discussing different processes, the

correlation times of the processes are typically compared. The correlation time of thW3 process

is defined as_1. For the remainder of this report the signal length or sampling window will be

in correlation time units. Using these time units, Equation 7 can be calculated from two

variables-the number of correlation time units and the nurmber of observations. In evaluating

this formula, the result will indicate the reduction of uncertainty for a san., 'ing window length, in

correlation time units, and a given number of observations within the sampling window. The next

task is to evaluate this formula at some interesting points and make some observations about the

behavior of the Vat(Y) as T and N change. Table 1 shows Var(Y ) evaluated at the indicated

values of N and T.

Table 1 shows that there is an optimal sampling rate for the calculation of the mean. The

increase in the variance as a result of oversampling seems to approach its maximum value when

the sampling rate is 512 observations per correlation time. This can be seen in row 1 of thA

table, when the signal duration is one-eighth of the correlation time, an increase in the number

5



Table 1. Var(Y) at Values of T and N.

Sampling Interval Number of Observations (N)

1/3 Time Units (T) 2 4 8 16 32 64 128 256

.125 .941 .950 .954 .957 .958 .959 .959 .959
.25 .889 .904 .913 .917 .919 .920 .921 .921
.5 .803 .822 .837 .844 .848 .850 .851 .852

.75 .736 .753 .770 .780 .785 .788 .789 .790
1.0 .684 .693 .712 .723 .729 .733 .734 .735
1.5 .611 .597 .615 .628 .635 .639 .641 .642
2.0 .568 .525 .539 .552 .560 .563 .566 .567
3.0 .525 .428 .430 .440 .447 .451 .453 .454
4.0 .509 .369 .357 .364 .370 .373 .375 .376
5.0 .503 .331 .306 .309 .314 .317 .319 .320

of samples from 64 does not increase the variance of the mean. Equation 7 was used to find the

value of N that corresponded to the minimum variance for sampling intervals of 1 to 10 correlation

units; these are displayed in Table 2 along with the variance obtained when the number of

observations is twice the sampling interval. Examination of these values indicate that a good rule

for selecting the optimal number of observations is: pick two if the signal has a length of less than

one correlation time unit; otherwise set the number of samples to twice the number of correlation

time units in the sampling window.

Oversampling, when using the mean as an estimator, inflates the variance of the estimate by

up to 7% of its minimum. The consequences of setting the sampling rate too low are much worse

than those associated with a high sampling rate. For correlated data, the mean is not the best

estimate except for the case of two observations. Thompson (1991) discusses a method to find

the best weighing factor to associate with correlated observations. Using the optimal weights, the

variance will decrease as a function of N, unlike the equal weight case presented in Table 1 and

Table 2.

4. OPTIMAL WEIGHTS

Optimal weights are those that yield a minimum variance unbiased linear estimate. The

weight for an observation is inversely proportional to the variance associated with an observation
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Table 2. Minimum Variance of Equation 7

Time IF Minimum N Variance N = 2*Time Variance

1 2 .6839 2 .6839

2 4 .5253 4 .5253

3 5 .4256 6 .4264

4 7 .3567 8 .3572

5 9 .3061 10 .3063

6 12 .2676 12 .2676

7 14 .2373 14 .2373

8 17 .2130 16 .2131

9 20 .1932 18 .1932

10 24 .1766 20 .1767

if the observations are independent; thus, if the variances associated with each observation are

the same, the weights will be equal and the mean will be the optimal estimator. Each weight

indicates the relative value of each observation. A more formal statement of this is: the optimal

weights define the inner product that minimizes the error when the observations are projected

onto a set of independent variables. Each weight is the Lagrange multiplier associated with the

observation.

The following discussion assumes a fixed sampling window with the first two observations

taken at the extremes of the interval. The intent is to demonstrate that for highly correlated

observations an increase in the sampling rate may not result in a meaningful decrease of the

variance; thus taking additional observations may not increase the useful information in a sample.

Since all pairwise correlations must be considered, it is parsimonious to consider the change from

two to three observations. The effects of taking an additional sample will be further diminished

if the sample is also correlated with more distant neighbors; however, the ideas for analysis are

the same as those in the change from two to three observations.

When using the optimal estimator, the addition of a data point always reduces the variance

of the estimator. To illustrate this, the change in the variance of the optimal estimator will be

7



investigated when N goes from 2 to 3. A decrease indicates that more information can be

extracted from any subinterval given the optimal weights. Assuming a correlation of 2 between

two observations, each has the same weight (.5). The variance is given by Thompson (1991) as

Var(Y)= 1 + 2  (8)
2

Next, assume that an additional observation had been taken at the midpoint of the interval. The

formulas for finding the three optimal weights are given by Thompson. Using the formula for

three correlated observations, let o = a 2 = C3 = 1, P12 = P23 
= c, and P13 

= a 2 -

k + k2 +k 3 =

[2(1 -a2)1-a
-a2  2 1(9)

Solving Equation 9 leads to the following values,

S3-a

k1 -' (10)

3-a

31a

The value of each observation is proportional to the weight associated with it. The added

observation, k, will have a small value when a is close to 1. The following formula gives the

variance of the estimator.

Var( 1) - k+4 + k 2a. 2k 2ka +2k k32 (11)
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Using this formula with the values of the weights plugged in gives

Var( = 2+(1-a)' + 4(1-a)a+2 2

(3-a)'

1 +a
3-a (12)

As a approaches 1, Var(TY) goes to 1. The addition of an observation that is highly correlated
with its neighbors seems pointless as it will have very little influence on the estimate and will not
significantly increase the information extracted from the signal. The exact amount of the decrease
in the variance can be found by subtracting the right side of Equation 12 from the right side of

Equation 8. This is done in the following:

1 +a2  1 +a (1 +a2 )(3-a) - 2(1 +a)
2 3-a 2(3-a)

= (1-a)3

2(3 -a) (13)

Since both the numerator and denominator are positive for 0 < a < 1, the information gain is
positive. If a is 0.9, the gain due to the extra observation is .000238; for an a of 0.5 the gain
would be 0.025. Correlated errors drastically reduce the information contained in the set of

observations.

Finding the optimal weights for a set of observations involves finding the inverse of a matrix

that is ill-conditioned if the correlation is high. In many cases, it may be numerically impossible
to perform this operation. Optimal weights can be found using the method discussed in Case 7
of Thompson (1991). The only reasonable way to calculate the weights is using software for
matrix operations. A program was devised to evaluate the variance when optimal weights are

used for estimation; the length of the sampling window and number of observations were varied.
The results are shown in Table 3.
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Table 3. Variance of Optimal Estimator at Values of T and N

Sampling Interval Number of Observations (N)

1/3 Time Units (T) 2 3 4 5 10

0.5 .8033 .8008 .8004 .8002 .8000
1 .6839 .6712 .6687 .6678 .6669
2 .5677 .5197 .5090 .5051 .5010
3 .5249 .4405 .4191 .4109 .4022
4 .5092 .3963 .3639 .3511 .3370
5 .5034 .3708 .3282 .3107 .2909
10 .5000 .3363 .2636 .2276 .1804

First consider each column. The reciprocal of the number of observations is the lower bound

for each column; it is the variance that would be obtained if the observations were independent.

Moving down a column shows the effects of increasing the duration of the sampling window.

Moving across a row shows the effects of adding more observations to a fixed sampling interval.

To complement the values in the table, two additional cases were evaluated: a sample window

of 10 correlation units with 20 observations results in a variance of 0.1698; and, for the same

window, 30 observations result in a variance of 0.1680. As the number of observations are

increased, the variance seems to decrease asymptotically. As a general rule, the sampling rate

should be set to two observations per correlation time.

In actual situations, the size of the observation window in correlation time units and the

intensity of noise correlation may not be precisely known, or either may vary over time. Typically,

it is impossible to precisely calculate the optimal weights beforehand. The amount of information

available for processing is directly proportional to the number of correlation time units over which

the observations are made; rather than the number of samples.

5. CONCLUSIONS

When the interval to collect data is small, the possibility of correlated data should be

addressed. If the observations are correlated, the length of the sampling window may need to

be increased. For an active protection system sensor this indicates that extending the initial

detection range has the greatest potential to increase the accuracy of the system if the

10



observations are correlated. The prudent approach would be to gather as much information as

possible on the noise processes that will degrade a sensor system's performance and then decide

how many correlation time units are needed for adequate performance. This demands knowledge

of the energy transformations associated with a specific sensor, and the effects of the atmosphere

or propagation media on the signal. The amount of correlation and intensity of the sensor noise

process will limit the information that can be extracted over a short time period.

If the formulas for uncorrelated observations are used, when the observations are correlated,

the variance estimate will be too low. In effect, there are fewer independent observations.

Simulation can be used to assess the effects of specific noise processes. When using least

squares estimation, the covariance estimate of the parameters will be deflated if the sampling rate

introduces correlation. When the observations are correlated, an extension of the observation

window is the most effective way to increase performance.
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